On the embedding and compactification of q-complete manifolds
ثبت نشده
چکیده
— We characterize intrinsically two classes of manifolds that can be properly embedded into spaces of the form PN \ PN−q . The first theorem is a compactification theorem for pseudoconcave manifolds that can be realized as X \ (X ∩ PN−q) where X ⊂ PN is a projective variety. The second theorem is an embedding theorem for holomorphically convex manifolds into P1 × CN . Résumé. — On caractérise intrinsèquement deux classes de variétés qui peuvent être incluses proprement dans des espaces de la forme PN \PN−q . Le premier théorème est un théorème de compactification pour les variétés pseudoconcaves qui peuvent être réalisées comme PN \ PN−q , où X ⊂ PN est une variété projective. Le deuxième théorème est un théorème d’inclusion pour les variétés holomorphiquement convexes dans l’espace P1 × CN .
منابع مشابه
Embedding measure spaces
For a given measure space $(X,{mathscr B},mu)$ we construct all measure spaces $(Y,{mathscr C},lambda)$ in which $(X,{mathscr B},mu)$ is embeddable. The construction is modeled on the ultrafilter construction of the Stone--v{C}ech compactification of a completely regular topological space. Under certain conditions the construction simplifies. Examples are given when this simplification o...
متن کاملQuasigeodesic Flows and Sphere-filling Curves
Given a closed hyperbolic 3-manifold M with a quasigeodesic flow we construct a π1-equivariant sphere-filling curve in the boundary of hyperbolic space. Specifically, we show that any complete transversal P to the lifted flow on H3 has a natural compactification as a closed disc that inherits a π1 action. The embedding P →֒ H3 extends continuously to the compactification and the restriction S1 →...
متن کاملEmbedding normed linear spaces into $C(X)$
It is well known that every (real or complex) normed linear space $L$ is isometrically embeddable into $C(X)$ for some compact Hausdorff space $X$. Here $X$ is the closed unit ball of $L^*$ (the set of all continuous scalar-valued linear mappings on $L$) endowed with the weak$^*$ topology, which is compact by the Banach--Alaoglu theorem. We prove that the compact Hausdorff space $X$ can ...
متن کاملLattice of compactifications of a topological group
We show that the lattice of compactifications of a topological group $G$ is a complete lattice which is isomorphic to the lattice of all closed normal subgroups of the Bohr compactification $bG$ of $G$. The correspondence defines a contravariant functor from the category of topological groups to the category of complete lattices. Some properties of the compactification lattice of a topological ...
متن کاملACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE
A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006